Neurofuzzy modelling and pattern matching for online fault detection and isolation of nonlinear DC M

Hing Tung Mok, Che Wai Chan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

An online fault detection and isolation scheme for nonlinear systems based on neurofuzzy modelling and pattern matching is developed in this paper. The system is first modelled offline by a neurofuzzy network using data obtained under normal operating conditions. Another neurofuzzy network is then used to model the residual, which is the difference between the output of the system and that from the neurofuzzy network. For online fault monitoring, it is necessary to construct first a fault database that contains fuzzy rules for all possible faults in the system. Recursive least squares algorithm is used to train the network online, from which the IF-THEN rules are extracted. Faults are isolated online by comparing these fuzzy rules with those in the fault database using a nearest neighbour classifier. A simulation example involving a nonlinear DC motor control system is used to demonstrate the implementation and performance of the proposed FDI scheme.

Original languageEnglish
Title of host publicationProceedings of the 17th World Congress, International Federation of Automatic Control, IFAC
Edition1 PART 1
DOIs
Publication statusPublished - 2008
Event17th World Congress, International Federation of Automatic Control, IFAC - Seoul, Korea, Republic of
Duration: 6 Jul 200811 Jul 2008

Publication series

NameIFAC Proceedings Volumes (IFAC-PapersOnline)
Number1 PART 1
Volume17
ISSN (Print)1474-6670

Conference

Conference17th World Congress, International Federation of Automatic Control, IFAC
Country/TerritoryKorea, Republic of
CitySeoul
Period6/07/0811/07/08

Keywords

  • Fuzzy and neural systems relevant to control and identification
  • Knowledge-based control

Fingerprint

Dive into the research topics of 'Neurofuzzy modelling and pattern matching for online fault detection and isolation of nonlinear DC M'. Together they form a unique fingerprint.

Cite this