Abstract
Let f [formula omitted] [formula omitted][X] and let q be a prime power pl(l ≥ 2). Hua stated and proved that [formula omitted] for some unspecified constant C > 0 depending on the derivative f′ of f; M denoting the maximum multiplicity of the roots of the congruence p−t f′(x) ≡ 0 (mod p), where t is an integer chosen so that the polynomial p−t f′(x) is primitive. An explicit value for C was given by Chalk for p ≥ 3. Subsequently, Ping Ding (in two successive articles) obtained better estimates for p ≥ 2. This article provides a better result, based upon a more precise form of Hua's main lemma, previously overlooked.
Original language | English |
---|---|
Pages (from-to) | 451-458 |
Number of pages | 8 |
Journal | Bulletin of the Australian Mathematical Society |
Volume | 50 |
Issue number | 3 |
DOIs | |
Publication status | Published - Dec 1994 |